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ABSTRACT 

Blending methods of Topological Dynamics and Control Theory, we 

develop a new technique to construct compact-Lie-group-valued minimal 

cocycles arising as fundamental matrix solutions of linear differential equa- 

tions with recurrent coefficients subject to a given constraint. The precise 

requirement on the coefficients is that they belong to a specified dosed 

convex subset S of the Lie algebra L of the Lie group. Our result is proved 

for a very thin class of cocycles, since the dimension of S is allowed to 

be m u c h  smaller  t h a n  t h a t  of  L, and  the  only a s s u m p t i o n  on S is t h a t  

Lo(S) = L, where  Lo(S) is the  ideal of L(S) genera ted  by the  difference 

set S - S, and  L(S) is the  Lie suba lgebra  of L genera ted  by S. This  covers 

a n u m b e r  of  differential equat ions  arising in Ma thema t i ca l  Physics ,  and  

applies in par t icular  to the  widely s tudied  example  of the  Rabi  oscillator. 
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1. I n t r o d u c t i o n  

We develop a technique to construct cocycles that have desired dynamical proper- 

ties and arise as the fundamental matrix solutions to linear differential equations 

of a given specific form. Our motivation comes from recent developments in 

Mathematical Physics regarding stability questions in the evolution of quantum 

systems, which turn out to be intimately related to the dynamical properties of 

certain flows [10]. As an example of the general situation to be studied here, 

consider the so-called "Rabi oscillator," i.e. the system governed by the equation 

This is the SchrSdinger equation for the dynamics of a "two level atom" or a spin 

1/2 particle moving under external magnetic field S(t) .  The function S: R -* C 

is a complex-valued potential, typically quasiperiodic in t, and A E R is a fixed 

parameter. In the past few years this system has been extensively investigated by 

physicists using numerical techniques, cf. [1], [5], [15], [16]. First rigorous results 

regarding existence of quasi-periodic solutions have recently been proved by P. 

Bleher, H. Jauslin and J. Lebowitz [3], using the K.A.M. technique. In contrast, 

we shall prove that the SU(2, C)-valued cocycle generated by (1.1) is minimal for 

generic S. 

Our result will in fact be valid for time-dependent differential equations far 

more general than (1.1), of the form x' = B(t)x, where x takes values in R n 

or C n, and t --* B( t )  is a real or complex matrix-valued function. The time- 

dependence of B( t )  will be "recurrent," in the sense that we will think of the 

matrix functions t --* B(I)  as arising from some given continuous matrix-valued 

map A, defined on a space ~ where some recurrent flow T is given, by evaluating 

A along trajectories of T. Even more generally, the maps A will in fact take 

values in the Lie algebra L of a compact connected Lie group G, and will generate 

cocycles XA: ~ X R ~ G. We will try to prove that, for "very thin" classes C 

of maps A, the corresponding cocycles are minimal for generic A E C. Various 

results about generic behavior of cocycles within suitable classes have been known 

for some time, cf. [6], [12], [13]. However, the classes where all the known results 

hold are cohomology invariant, in the sense that all cocycles cohomologous to 

a cocycle in the class are again in the class. In our case the classes are never 

cohomology invariant since the differential equation from which the cohomologous 

cocycles arise may fail to be of the special form we desire. Furthermore, in our 
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situation there is a very stringent condition on cocycles, namely, they must arise 

as solutions to a differential equation of a given specific form, such as (1.1). 

Our "thin classes" are described via a constraint on the values of the map 

A: gt --. L, and arise from maps taking values in a fixed given closed convex 

subset S of L. Typically S will be "thin" in L, in the sense that  the dimension 

dim G of G will in general be considerably higher than the number dim S of 

free parameters  that  we are allowed to vary to generate our minimal cocycle. 

(For example, in the case of the Rabi oscillator the cocycle takes values in a 

three-dimensional Lie group, but we only have two real degrees of freedom, since 

the map f which is our perturbation takes values in a two-dimensional space of 

complex nmnbers.) 

Precisely, we will s tart  by specifying 

(1) a compact connected Lie group G with Lie algebra L, 

(2) a subset S of L, 

(3) a flow (fl, T), where fl is a compact metric space and T = {Tt} teR is a 

one-parameter group of homeomorphisms Tt: f l  --* f l  of f~. 

Remark  1.1: Equation (1.1) is a special case of the above situation, correspond- 

ing to G = SU(2, C) (so that  L = su(2, C), the set of all 2 x 2 skew-hermitian ma- 

trices) and S = S~, the set of all M C su(2, C) of the form ia - b i)~ ' 

where a, b E R,  so S is in fact a two-dimensional affine subspace of the three- 

dimensional Lie algebra L. I 

The functions t ~ B ( t )  will then be those of the form t --* A ( T t w ) ,  for w E ft. 

This gives rise to a family of differential equations 

(1.2.w) x ' ( t )  = A ( T t w ) x ( t ) ,  x e G ,  

parametrized by points w Ef l .  We use the following notational convention: we 

think of L as the tangent space of G at the identity element ea  of G. The effect on 

a w C L of the differential dRx  of the right translation G ~ z --* R x ( z )  = z x  E G 

is written w x  (rather than (dR~) (w)  or (Rx). (w), as is often done in Differential 

Geometry),  so w x  is a tangent vector at x, and then the map Vw: x --* w x  is 

a right-invariant vector field. The map w --* V,o enables us to identify L with 

the space of all right-invariant vector fields on G. The right-hand side of (1.2.w) 

is then the value at x ( t )  of the Hght-invariant vector field whose value at ea  is 

A ( T t w ) ,  so (1.2.w) is equivalent to x ' ( t )  = VA(Ttw)(x(t)). If G is a matr ix  Lie 
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group, then A(Ttw)x(t) can be interpreted as an ordinary matrix product. The 

reader who so prefers can assume throughout the paper that  G is a matr ix  Lie 

group and A(Ttw)x(t) is an ordinary product. 

Let A: ~t ~ L be a continuous map. For each w E gt, let t ~ XA(w,t) be the 

fundamental  matrix solution to (1.2.w), i.e. the solution x(-) of (1.2.w) such that  

x(0) = eG. Then the map XA: ~ X R ---* G is continuous and satisfies the cocycle 

identity 

(1.3) XA(W, t + s) = XA(Tt(w), s)Xn(w, t) for all w e ~2, t, s E R. 

The proper analogue of the flow generated by the differential equation (1.1) is 

now the skew-product flow (G x ~,  T A) generated by the cocycle XA on G x ~,  

where T A = {TA}teR, and TA: G x fi -* G x fi is the map given by 

(1.4) TA(g, w) ---- (XA(w, t)g, Tt(w)). 

We will prove that  if (~t, T) is minimal then the skew-product flow T A defined 

on G x f~ by (1.4) is minimal for a generic S-valued A, provided that  S is convex 

and not too small. We recall that  a flow is minimal if every orbit is dense or, 

equivalently, if there are no proper closed invariant subsets. 

To state the condition on S, let us first define L(S) to be the Lie subalgebra of 

L generated by S, and let Lo(S) be the ideal of L(S) generated by the difference 

set 

S - 8 =  { x - y : x ~  8, y e S } .  

We now introduce two fundamental concepts of Nonlinear Control Theory (cf. 

for example [17]): 

Definition 1.1: A subset S of the Lie algebra L of a Lie group G has the 

acces s ib i l i t y  p r o p e r t y  if L(S) = L, and the s t r o n g  access ib i l i ty  p r o p e r t y  

if Lo(S) = L. | 

Remark  1.2: In Control Theory, the accessibility properties of Definition 1.1 are 

used for general sets S of smooth vector fields on a smooth manifold M. In that  

case, one lets L(S) be the Lie algebra of vector fields generated by S, and defines 

Lo(S) as above. Then S is said to have the access ib i l i ty  p r o p e r t y  (resp. the 

s t r o n g  access ib i l i ty  p r o p e r t y )  at a point p • M if {X(p): X E L(S)} = TpM 

(resp. {X(p): X E L0(S)} = TpM), where TpM is the tangent space of M at p. 
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When  M is a Lie group and S consists of translation-invariant vector fields, then 

these conditions do not depend on p, and are equivalent to those of Definition 

1.1. | 

We now state the main theorem, whose proof  will be given in the next section. 

THEOREM 1.1: Let.(f~, {Tt}teR) be a flow on a compact metric space f~. Let G 

be a compact connected Lie group with Lie algebra L, and let S be a subset of 

L. Let C(f~, S) denote the metric space of all continuous maps from f2 to S with 

the supremum metric. Assume that 

(1) the flow (~2, {Tt}teR) is aperiodic and minimal, 

(2) S is dosed and convex, 

(3) S has the strong accessibility property. 

For each A E C(f~, S), consider the the skew-product ttow (G x f2, T A) defined 

by T A = {TtA}tea, where the T A are given by (1.4). Let 

C min(~2, S) = {A E C(f~, S): (G x a , T  A) is minimal}. 

Then C,~i,~(~2, S) is a residual subset of C(f~, S). 

Remark  1.3: Notice tha t  our condition on the set S is a little stronger than  

demanding tha t  S generate L as a Lie algebra over R.  It  is easy to see tha t  

Theorem 1.1 is no longer true if in Hypothesis  (3) s trong accessibility is replaced 

by accessibility. To see this, let f~ = T 2 = S 1 x S 1 be the 2-torus, and let T 

be given by Tt(e i°~ , e w~ ) = (e *(01+t), ei(°2+at)), where a is an irrational number.  

Then  T is minimal and aperiodic. Let G = S 1, so L = R.  Let S = {1}. Then  S 

has the accessibility property, but  the strong accessibility condition fails. Since 

S consists of a single element, the map A: f~ --* L is unique. It  is easy to see tha t  

T A is not minimal,  since 

TtA (e iOo ' e i01 ' eiO2 ) = (ei(°o+t), ei(Ol+t), ei(O2+c~t)) , 

so every point  (z0, Zl, z2) in the TA-orbit  of (1, 1, 1) satisfies z0 = zl, showing 

tha t  the orbit  is not  dense. 1 

Example: For the Rabi oscillator, G = SU(2, C) and L = su(2, C) ,  as explained 

before, arid the set S is given by 

- 3  iA : z E C . 
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Then S is closed convex and S - S contains the matrices - i  0 

( 0 1 ) whichgenerateLasaLiealgebra" ThenL°(S) = L' a n d t h e - 1  0 ' 

conditions of Theorem 1.1 are satisfied. | 

To prove Theorem 1.1, we develop a new technique to construct cocycles with 

desired dynamical properties in "thin" classes. Our technique involves a blend 

of methods of Dynamical Systems and Control Theory. The main idea is to 

think of a perturbation needed to get the desired dynamical properties for the 

cocycle as a control function that steers the state of a certain control process to 

the desired target. We shall prove an accessibility result (Proposition 2.1) for a 

system of non-autonomous right-invariant vector fields on a Lie group. (See [11], 

[17]. Results of this type are of independent interest in Control Theory.) 

In Theorem 1.1 minimatity of the skew product can be replaced by topological 

weak-mixing (see [14] for the needed modifications). Furthermore, using argu- 

ments of [13] one can also show the generic absence of almost periodic solutions 

to the differential equation for any w C ~. These results can be obtained by 

minor modifications of our technique and are left to the reader. 

We would like to conjecture that in fact for a generic A the above flow is 

ergodic. However at this point there are non-trivial technical difficulties in 

proving ergodicity. In the example of the Rabi oscillator, the stability prop- 

erties of quantum evolution are studied through the spectral properties of the 

one-parameter unitary group V = {Vt}t~R defined on L2(~, C 2, #) by 

(1.5) ~ / ( ~ )  = x~(~ ,  t )- l  f(T,(.~)), 

where p is a given invariant Borel probability measure on ~. The above conjec- 

ture would imply that generically these operators have only purely continuous 

spectrum. 

2. P r o o f  o f  T h e o r e m  (1.1) 

Fix a point (ec,wo) C G × ~t, where wo E ~t and eG is the identity element of G. 

Given nonempty open sets U1 C_ G and U2 _C ~t define the set: 

E(U1, U2) = {A e C(~t, S): the orbit of (eG,wO) under T A intersects U1 x U2}. 

We will show that E(U1, U2) is open and dense in C(~2, S). This will imply 

our desired conclusion. Indeed, by varying U1 and U2 over countable bases of 
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the topologies of G and 12, respectively, and considering intersections of the cor- 

responding sets E(U1, U2), it will follow that the set {A: the orbit of (eG, w0) 

under the flow T A is dense in f~} is residual. Since G × ft is a compact group 

extension of a minimal flow, existence of one dense orbit implies minimality [7], 

so Cmt,~(t2, S) is residual as stated. 

Openness of E(U1, U2) follows easily from the continuous dependence of 

solutions of (1.2.~v) with respect to A. We now proceed to prove the density. 

Let A0 E C(12, S) and c > 0 be given. From now on, we choose an inner 

product {.,-} on L, and let [1" ][ be the corresponding norm. We want to construct 

A E C(fl, S) that is a-close (in the chosen norm) to A0 and such that the orbit 

of (ea, a0) under T A intersects U1 × U2. We now sketch this construction. 

The minimality of T enables us to find arbitrarily large r > 0 such that 

T~(wo) E [/2. Naturally, the corresponding points XAo(Wo,r ) need not belong 

to U1. However, we will show that if r is large enough then a suitably chosen 

S-valued e-perturbation A of A0 will satisfy XA(WO, r) E U~. The property that 

XA(Wo, r) E U1 only depends on the values of A on the set 

K( r )  = {Tt(wo): 0 < t < r}, 

which is homeomorphic to the interval [0, r] via the map t ~ Tt(w0), due to the 

aperiodicty of T. So all we need is to construct the desired perturbation A on 

K(r ) ,  and then extend it to all of 12 using Tietze's Extension Theorem. (A simple 

argument will show that the extension can be kept S-valued and e-close to A0 

if these properties hold on K(r).) We therefore have to show that if r is large 

enough, and 70,r denotes the restriction to [0, r] of the curve 70: R --* S given 

by 7o(t) = Ao(Tt(wo)), then 7o,r can be ~-perturbed in the space C([0, r], S) of 

continuous S-valued functions on [0, r] so that for the resulting curve ~, if we 

solve the Cauchy problem g'(t) = 7(t)g(t), g(O) = ea, then the solution will 

satisfy g(r) E Ut. Now, an equation such as 

(2.1) g'= 7(t)g, 

in which 7 is an arbitrary curve with values in some subset S of the Lie algebra 

L of a Lie group G, is known in Control Theory (cf., e.g., [11]), as a r igh t -  

i nva r i an t  c o n t r o l  s y s t e m  on  a Lie g roup .  The curves 7 are the cont ro l s ,  

and each control gives rise to a t r a j e c t o r y  for each initial condition g(0). If 
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9 E G, then the set of all points of the form g(r), for all trajectories g(.) - -  

corresponding to all possible controls--  that  satisfy g(0) = g, is known as the 

t i m e  r r e a c h a b l e  se t  from g. More generally, one can consider instead of a 

fixed "control constraint" such as 3'(t) 6 S, a time-varying constraint of the form 

~/(t) E S(t), where the set S(t) depends on time. In particular, our problem 

can now be stated as follows: given a compact connected Lie group G, a subset 

S of the Lie algebra L of G, an ~ > 0, and a curve 3'0: R ~ S, we want to 

show - -unde r  suitable hypotheses on S - -  that  for sufficiently large r the time 

r reachable set from eG for the control system f = 3"(t)g, with time-varying 

constraint 3'(t) e S, ][3'(t) - 3'0(t)][ < ~, is the whole group G. To achieve this, we 

first pick an arbi trary 7- > 0 - -which in our proof below will be taken equal to 1 -  

and show that  the time T reachable set by means ofpiecewise continuous controls 

has nonempty interior. This will turn out to be true for an arbitrary curve 3'0, 

so in particular we can apply it to all the translates t --~ 3'o(t + kT) = 3'~(t), for 

k = 0, 1, 2 , . . . .  In each case, we get a nonempty open subset Vk of G such that  

every point gk of Vk can be reached from ec  in time T by means of a t rajectory 

of g' = 3"(t)g corresponding to a piecewise continuous - -gk-dependen t - -  control 

~k: [0, T] ~ S that  is e-close to 3'0 k on [0, T]. If we translate the 3'k's back to 

the intervals [kv, (k + 1)T], and concatenate them~ we get, for each m E N,  a 

piecewise continuous control ~'~: [0, m T ]  ~ S that  is e-close to 3'o and gives rise 

to a trajectory going from ea  to gmgm-l"" "gl in t ime mr .  Now suppose that  

for some m we could guarantee that  

(2.2) V m V m _ l  " " V 1 = G .  

In that  case we can arbitrarily specify an element h of G, and then choose 3' = ~'~ 

so that  the solution of (2.1) that  goes through ea at t ime 0 will satisfy g(mT) = h. 

If we then pick r > m r  such that  T~(w0) 6 /-72, and then choose h such that  

XAo(Tm~(wo),r --mT)h 6 U1, and extend 3' to [0, r] by letting it equal "Y0 on 

(mT, r], then this "y will be our desired perturbation, except only for the minor 

detail that  3' is only piecewise continuous, and we need it to be continuous. This 

last point, however, is easily taken care off one can approximate 3' by continuous 

S-valued maps 3'~ that  are e-close to 3'0, in such a way that  the corresponding 

trajectories g~ converge uniformly to g(.). (Naturally, this approximation is not 

possible in the uniform topology, but it is possible, for example, in L 1 norm, and 

this suffices to get uniform convergence of the solutions.) Then g~(r) will be in 

U1 for large enough v, and the function ~/~ will be our desired perturbation. 
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The crucial question is therefore whether the ~/~ can be chosen so that  (2.2) 

holds for some m. Notice that  each Vk corresponds to a different control 70 k. 

(More precisely, Vk depends on the restriction ~ of "/0 k to [0, T].) If  we could 

guarantee that  every Vk contains a translate of some fixed neighborhood W of 

ea,  then the validity of (2.2) for some m would be a consequence of the fact that  

a compact connected topological group has the following Property A*: 

Definition 2.1: A topological group G has P r o p e r t y  A* if given any neighbor- 

hood V of the identity there exists a m • N (depending on V) such that ,  if 

W1, W2, .. • ,  Wm are any right translates of V, then W m W m - l " ' "  W1 = G. | 

The proof that  G has Property A* is given at the end of the paper. In view 

of this property, our conclusion will follow if we show that  the Vk's can be 

chosen in a uniform way, in the sense that  each contains a translate of some 

fixed neighborhood W of ec.  

The crucial point is that,  although the neighborhoods Vk depend on the curves 

~0 k • C([0, T], S), the desired uniformity can be achieved because the set of curves 

~o k that  interest us is precompact. The precompactness follows easily from the 

fact that  the curves t ~ Ao(Tt(w)), 0 < t < T, form a compact set as w varies 

over ~. The fact that  this implies the existence of W is the content of our main 

accessibility result, Proposition 2.1 below. 

We now introduce some notations so as to be able to state and prove 

Proposition 2.1. For a bounded or unbounded closed interval I ,  let CP¢(I, S) 

denote the set of all piecewise continuous maps A: I --~ S, so A • Cpc(I, S) if A 

is an S-valued map on I that  is continuous at all points of I except for a finite 

set of jump discontinuities. If 0 E I, A • Cpc(I,S),  let FA denote the unique 

G-valued absolutely continuous solution curve of the initial value problem 

g' = A(t)g(t), t • I, 

g(o )  = e c .  

If A • CP~(I, S) and 5 > O, define the set Ns(A,  5) as follows: 

Ns(A,  5) = {B • CPC(I,S): sup I]A(t) - B(t)ll < 6}. 
tEI 

PROPOSITION 2.1: Let G be a Lie group with Lie algebra L. Let S C_ L be as in 

Theorem 1.1. Let T > O, and let F C_ C([0, T], S) be a compact subset. Then given 

6 > 0 there exist a neighborhood W of the identity ea of G, depending on 5 but 
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independent of A E go, such that for each A E J: the set {FB(r): B E Ns(A ,  5)} 

contains some right translate of W.  

Before proving Proposition 2.1, we show how it allows us to prove Theorem 

1.1 by following the strategy outlined above. 

Recall that  A0 E C(~, S) and e > 0 are given and we want to find A E C(f~, S) 

that is e-close to Ao and such that the orbit of (eG, w0) under T A intersects 

U1 × U2. We now list the steps in the construction of A in complete detail. 

STEP 1: Let 5 = e /2. 

STEP 2: Apply Proposition 2.1 with T = 1, ~- = {(A0)~: w E f~} C_ C([0, 1], S), 

where (Ao)~(t) = Ao(Tt(w)), t E [0, 1]. We then get a neighborhood W of ec, 

depending only on 6, such that for each w E f~ there exists some h(w) E G 

satisfying 

(2.3) 

STEP 3: 

STEP 4: 

Wh(w) c_ {FB(1): B E Ns((Ao)~, 5)}. 

Corresponding to W, pick m E N according to Property A*. 

Set (j = Tj (w0), 0 < j _< m. Consider A t E $" defined by 

Aj(t )  = Ao(Tt(~j-1)), t E [0, 1], 1 _< j <_ m. 

Letting hj = h(~j-1), 1 < j < m, (2.3) yields; 

(2.4) 

STEP 5: 

(2.5) 

STEP 6: 

us. 

STEP 7: 

(2.6) 

STEP 8: 

(2.7) 

Why C_ {r.(1): B E Ns(A~,5)}. 

By Property A* we have, 

W h m W h m - 1  "'" W h l  = G. 

Using the minimality of the base flow, select r > m such that  Tr(wo) E 

Pick g E G such that 

X A o ( T m ( w O ) ,  r - m)g E V l .  

Using (2.5), write 

g = g m g m - l " " 9 1 ,  g j E W h j  f o r j = l , . . . , m .  
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STEP 9: Using (2.4), select Aj E N s ( A j , 6 )  such that gj --- r~j(1) .  

STEP 10: Define 

f t ( t ) = A j ( t - ( j - 1 ) )  i f j - l < _ t < j ,  l < j < _ m ,  

A(t) -= Ao(T,(wo)) i f t  E R\[0 ,  m). 

Then  2 E CPC(R, S), F~i(r ) E Ut, and [[A(t) - Ao(Tt(wo))H < 6 for all t E R.  

STEP 11: Let  {A'}  be a sequence of continuous S-valued functions on R tha t  

converges to  A in L 1 norm on each compact  interval, and satisfies 

(2.8) tl,4"(t) - Ao(Tt(w0))ll < 26 for all t E R.  

ct+-~ A(s)ds.  Then  A~ is (To see tha t  such a sequence exists, define A~(t) = u j¢ 

S-valued, because S is closed convex and A is S-valued. If we define 

f 
t+5 

A~(t) = u jr Ao(T~(wo))ds, 

then it is clear tha t  A~)(t) --~ Ao(T,(wo))ds uniformly as v --* ~ ,  because the 

function t ~ Ao(T,(wo)) is uniformly continuous. Since IIA'(t) - A~(t)[I < 6 for 

each t, we may assume - - b y  taking u sufficiently la rge- -  tha t  (2.8) holds. Finally, 

it. is clear tha t  A ' ( t )  --* A(t) as u -* cx~ whenever t is a point  of continuity of 

A. Since the A" are clearly uniformly bounded,  the L 1 convergence on compact  

intervals follows trivially.) 

STEP 12: It follows trivially from Gronwall 's inequality tha t  Fti~ (r) --+ F2 ( r )  

as u --+ c~. Since F~i(r ) E U1 and U1 is open, we conclude tha t  F2~(r )  E U1 for 

some p. Pick a u for which this is true, and let A*: [0, r] ~ S be the restr ict ion of 

.4~ to [0, r]. Then  A* is continuous and S-valued on [0, r], satisfies FA-(r)  E U1, 

and is s-close to t -~ Ao(Tt(wo)) in supremum norm on [0, r]. 

STEP 13: Using the fact tha t  the flow T is aperiodic, we may identify the 

interval [0,r] with the compact  subset K = {Tt(w0): t E [0, r]} of ft. So we 

may regard A* as defined on K.  It  is then easy to see tha t  A* has a continuous 

extension A: ~ --* L tha t  satisfies 

(2.9.i) 

(2.9.ii) 

A(w) E S  for a l l w E ~ ,  

IIA(~) - Ao(w)ll < e for all w E ft. 
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Indeed,  the Tietze Extension Theorem,  applied to the m a p  A* - A0, which is 

defined o n / (  and takes values in the open ball B(e)  = {x E L: Ilxtl < e}, yields 

a B(e) -va lued  extension 0 of A* - Ao to all of gt, and if we let A = A0 + 

we get an extension of A* to ~ tha t  satisfies (2.9.ii)i If  A is not S valued, 

then  we can modi fy  A by composing with 7cs, the project ion m a p  from L to 

S. (Recall tha t ,  if x C L, then 7rs(x) is, by definition, the point  of S closest 

to x. Since the norm I1" II arises from an inner product ,  ~rs is well defined and 

continuous.)  Since Ao is S-valued, it is clear tha t  7rs o A is pointwise closer to 

Ao than  A is, so (2.9.ii) remains  t rue after this modification. (Let w E ~2, and 

wri te  x = A ( w ) ,  y = i ts (x) ,  z = Ao(w) .  Let zs = y + s ( z -  y) for s • R .  Then  

IIX -- Zslt 2 = IIX -- yll 2 + S211y -- Zll 2 + 2S(X -- y , y  -- Z>. If  (X -- y , y  -- Z) < 0, it 

would follow tha t  IIx - zs][ 2 < I]x - y]l 2 for small  posit ive s. Since zs • S for 

0 < s < 1, this would contradict  the fact tha t  y = 7cs(x). So <x - y, y - z) > 0. 

But  then,  set t ing s = 1, we get I]x - zl] 2 > I]Y - zll 2, so y is closer to z t han  x 

is, as desired.) 

Notice tha t  by construct ion XA(WO, r) = FA(r)  • U1. Then  

T2(ec,. o) = e Ul × 

So the  orbit  of (ec ,  w0) under T A intersects U1 x/-72, and the proof  o f  Theo rem 

1.1 is complete,  modulo  Proposi t ion 2.1. II 

We now turn  to  the proof  of Proposi t ion 2.1. We will use a well known 

accessibility result  f rom Control  Theory,  whose short  proof  will be given in full. 

The  result  says tha t ,  given a generat ing subset  S of the Lie algebra L, the set 

of  points  of the Lie group G tha t  can be reached f rom the identi ty by a finite 

po lygonal  pa th  consisting of integral curves of vector  fields in S has nonempty  

interior. To s ta te  it precisely, we first introduce some notat ion.  

I f  M is a smoo th  manifold and x E M ,  we use T ~ M  to denote the tangent  

space of M at  x. We recall t ha t  if G is a Lie group then  the Lie a lgebra  of 

G is, by definition, the tangent  space L = Tea G, and we agree to identify L 

with  the  space of r ight- invariant  vector  fields on G. Wi th  this identification, the 

exponent ia l  m a p  L 9 X ~ e x E G satisfies d ( e t X )  = X e  t x .  

Given  k E N and X = (XI  . . . .  ,Xk)  E S k =- S x . . .  x S, define a m a p  

E x :  R k ~ G by 

Ex<t )  = E x ( t l , . . .  , tk)  = e t~X~ "'" e t~X~. 
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Let (D(Ex))~ :  R k --~ TE×(~)(G ) = L be the differential of E x  at t. Let 

p({) = rank(D(Ex))~ and Px = Max{px( t ) :  t E Rk}.  

LEMMA 2.1: Let G be an m-dimensional Lie group with Lie algebra L, and let 

S be a subset of L that has the accessibility property (i.e. S generates L as a 

Lie algebra). Then there exists an m-tuple X = (X1 , . . .  , Xm)  E S m such that 

for every rl > 0 the set {e ~1xl "''esmXm: 0 < Sj,y~d=t S j < r/} has nonempty 

interior. 

Proof We first prove by induction on k tha t  

(2 .1 . I ) :  for 1 < k < m there exists X E S k such that Px = k. 

This is trivially true for k = 1. Assume that  it is true for a k C { 1 , . . . ,  m - 1}. 

Let X E S k be such tha t  Px = k, and find t = ( t l , . . . , t k )  C R k such tha t  

px(t )  = k. The implicit function theorem implies tha t  there exists an e > 0 

such tha t  E x  maps a cubic e-neighborhood V(t,  e) of t diffeomorphically onto a 

k-dimensional submanifold E of G. Recall tha t  if two vector fields are tangent  

to E then so is their Lie bracket. Thus, since S generates L, there must  exist 

Y E S and g E E such tha t  Yg ~ TgE. (Otherwise, every X E L would be 

tangent  to E, contradict ing the fact tha t  k < m.) Let g = Ex( t )  for some 

= (t-l, . . . ,  t-k) • V(~, e). Let 3? = (Y, X 1 , . . . ,  Xk) • S k+t. Then  

E 2 ( r , s t , . . . , s k ) = e ' Y e  ~ I x l . . . e  ~kx~, ( s l , . . . , s k ) • R  k, r • R .  

Since px( t )  = k, it is clear tha t  p2(O, t) = k + 1. This completes the proof  of 

(2.1.1). 

If  we now apply (2.1.I) with k = m, we find a t = ( t l , . . .  ,tin) • R m and 

X • S m such tha t  px(t )  = m. Since the map E x  is real-analytic, the set 

U of points t for which Px (t) = m is dense in R k. In particular,  given any 

r / >  0, U contains points t = ( t t , . . .  ,tin) such tha t  0 < tj for j = 1 . . . .  , m  and 

~ j = l  tj < ~. The desired result then follows. I 

To prove Proposi t ion 2.1, we need to sharpen the above lemma, and show tha t  

in fact the set {e slx~ . . .  e s m x ' ~ :  0 < 8 j ,  ~ j = l  Sj = f/} has nonempty  interior for 

all r~ > 0. This is where the strong accessibility condition on S will be decisive. 

To discuss this in detail, we need to introduce some more notations.  

First, let us write L* (S) to denote the linear span of all brackets 

k___2. 
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Let A(S) be the linear span of S, and use Ao(S) to denote the linear span of 

all the differences v - w, for v, w E S. Then Ao(S) can also be characterized as 

the set of all finite linear combinations ~ j  Ajvj, vj E S, ~ j  A t = 0. It is then 

clear that  Lo(S) = L*(S) + A0(S) and L(S) = L*(S) + A(S). (The first equality 

follows from the facts that 

(1) L* (S) C_ Lo (S), which is true because, whenever a bracket v is of the form 

Iv1, Iv2, . . . ,  [vk-1, vk]-.. ]], then v = Iv1, Iv2, . . . ,  [vk-1, vk - vk-1]""" ]], 

(2) S -  S C_ Ao(S) C_ no(S), 

(3) L*(S) + Ao(S) is an ideal of L(S). 

The second equality is trivial.) This implies in particular that if Lo(S) ~ L(S) 

then dim(L(S)) = 1 + dim(Lo(S)). We summarize these observations as follows: 

(I): I f  v E L, then v E Lo(S) if and only if v can be expressed as. 

k k 

(2.10) v = v o + ~ A j v j ,  E A j = O ,  voEL*(S) ,  v j E S  f o r j > 0 .  
j = l  j = l  

(II): Either L(S) = Lo(S) or Lo(S) has codimension one in L(S). 

Now let G = G × R and S = {(v, 1): v E S}. Let ], be the Lie algebra of G. 

Let L(S) be the Lie subalgebra of ], generated by S. 

LEMMA 2.2: With the above notations, Lo(S) = L if and only i lL (S )  = L. 

Proof." For each v E L, let ~ = (v, 0) E L, and write ~ = (v, 1). Then v --* ~ is a 

Lie algebra homomorphism. In particular, if v E L* (S) then ~ E L* (S) because, 

if v -- [vi, Iv2, . . . ,  [vk-1, vk] .--]], then 

= [ o k - l ,  = . . .  ] ] ,  

since k > 2. 

Suppose Lo(S) = L. Since {~: v E L} and (0, 1) span L, it is enough to show 

that  these vectors belong to L(S). Let v E L. Since Lo(S) = L, 

k k 

v = vo + ajv , Z = 0, 
j = l  / = 1  

k ~ k 
where the vj are as in (2.10). But then ~ = 00 + ~ j = l  Ajvj, and Ej=I ,~J?)J = 

k k Ej=I  "~jl)j '  since E j = I  ~J = 0. Since we know that ~o E L*(S), we conclude 
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tha t  ~ C L(S) .  Therefore {~: v E L} C L(S) .  Now pick any v C S. Then  

(0,1) = ~ 3 - 9 .  Since~) E S and ~ E L(S) ,  (0,1) belongs to L(S)  as well. So 

L(S)  = L. 

Conversely, suppose tha t  L = L(S).  Then  every w C L can be wri t ten  as 

(2.11) 
k 

W : W 0-[- E A j W j '  
j = l  

where Wo E L*(S)  and wj belong to S for 1 _< j < k. In par t icular ,  given 

any v C L, we can take w = ~, and express it in the form (2.11). Equa t ing  
k A second components ,  we conclude tha t  ~-~-j=l J = 0. Now, it is easy to see tha t  

w0 = v0 for some v0 C L*(S).  If we write wj = ~j for j = 1 , . . .  ,k ,  we see t ha t  
k k 

v = Vo + ~-:~j=l Ajvj  with }-~j=l/~J = 0, V 0 E L * ( S ) ,  and vj E S for 1 _< j _< k. So 

v E Lo(S) .  This shows tha t  L = Lo(S) ,  concluding our proof. | 

We are now ready to prove the desired sharper  version of L e m m a  2.1. 

LEMMA 2.3: Let  G be an m-dimensional Lie group with Lie algebra L, and let 

S be a subset o f  L that has the strong accessibility property. Then there exists 

an m- tup le  X -- ( X 1 , . . .  ,Xm)  E S m such that for every ~ > 0 the set 

m 

j= l  

has n o n e m p t y  interior. 

Proof." Apply  L e m m a  2.1 to the Lie group G = G × R ,  the Lie algebra L = L x R 

of G, and the subset  S = {(v, 1): v E S} of L. L e m m a  2.2 ensures tha t  the 

hypothesis  of L e m m a  2.1 is satisfied. Thus  we get )( j  = (X j ,  1) E :~, 1 _< j _< m 
m such tha t  the set {e s12~ • • • eSm2~: 0 < sj, E j = I  Sj ( T]} contains a nonempty  

open subset  ~/ of G. Fix any point  q E /J. Write q = (p, r),  p E G, r E R.  Let 

U -- {g C G: (g, r) E U}. Then  U is a nonempty  open subset  of G. If  g E U, then  

(g , r )  = e ~ 2 1 . . . e  ~ 2 ~  for some s l , . . . , s m  such tha t  0 < sj and ~ j  sj < 71. 

Since 
m 

j----1 

m we have in par t icular  ~ j = l  sj = r. So every g E U is of the form e slx~ . . .  e ~ x ~  

with 0 < s j ,  ~-:~jsj < r/, and ~ j s j  = r. I t  then follows tha t  r < U. Now let 
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U* = {ge( ' - r )xm:  g E U}. Then U* is a nonempty  open subset of G, and every 
m member  of  U* is of the form e slx~ . . . e  (*m+(n-~))x"~ with 0 < s t ,  ~ j = l  8j --~ r, 

m i.e. of the form e *~x~ . . . e  s=xm with 0 < sj, ~ j = l  st = r]. This proves the 

lemma. I 

Proof  of  Proposit ion 2.1: Let m = dim(G).  Recall tha t  we are given a compact  

se t .TC_ C([0 ,7 ] ,S) ,  T > 0, a n d a 6  > 0. Let h ' - =  {A(t): t E [0, T], A E-T} .  

Then  K C_ S is compact .  Let {Uj: 1 < j <_ q} be a cover of K by relatively open 

subsets of S with diameter  less than 6. Using a Lebesgue number  for this cover 

and the fact tha t  $" is compact  and hence equicontinuous, we can find p such 

tha t  0 < p < ~- with the proper ty  tha t  for each A E . f  there is a j = j ( A )  such 

tha t  

(2.12) {A(t): 0 < t < p} C_ Uj. 

We now let E denote the set of all m-tuples s = ( s l , . . .  , Sm) E R m such tha t  

sk > 0 for k = 1 , . . . , r n  and ~ k s k  = p. I f X  = ( X l , . . . , A r m )  E L m and 

s = (S l , . . .  ,Sm) E R m, write e ~x = e 8rex . . . .  e sLxl. 

Since S is convex, it is easy to verify tha t  every nonempty  relatively open 

subset of S also has the strong accessibility property. Then, applying L e m m a  2.3 

with Uj in the role of S, we get, for every j E {1 . . . .  , q}, an m-tuple  

x J  = ( x { , . . . ,  e us x . . . x  us 

such tha t  the set Qj = {e~X': s E E} contains a translate W j h j  of some 

neighborhood Wj of the identity. Let 

q 

w=Nw,,  w= 
j = l  g E G  

Then W is a neighborhood of ca, since G is compact.  Moreover, W g  = g W  for 

all g E G. Clearly, W h j  C_ Qj for every j .  (Notice tha t  W depends only on 

p, which in turn  depends only on e and not on individual A E ~-.) Now, given 

any s E E, 1 _< j _< q, define Hs,j: [0,p] --* S to be the piecewise constant  map  

whose value on the interval [Sl + " ' -  + sk-1, sl + " .  + sk) is X~. Given A E $' ,  

s E E, define Bs,A: [0, r] --* S by letting Bs,A(t)  = Hs,j(A)(t) for 0 _< t < p, 

Bs,A(t)  = A( t )  for p < t < r .  
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Then,  if A E 9 r ,  it is clear tha t  Bs,A E Ns(A,  6) for every s C E. Moreover,  

Whj(A) C Qj(A) = {FH,.j(A)(P): 8 E ~},  

and then  

Whm C_ {FBs,A (~-): s e E} C_ {FB(7): B E Ns(A ,6 )} ,  

where hA = FA(T)FA(p)-lhj(A),  and we use the fact tha t  

F A(T)F A(p) - IWhj(A)  ---- W F  A(r)F A(p)-lhj(A) = WtZA. 

This  shows tha t  W has the desired property.  I 

Proof that a compact connected group has property A*: Let V be a given 

neighborhood of ea .  Let  U = N { g V g - l :  g E G}. Then  U is a ne ighborhood of 

ea as well, U c_ V, and gU = Ug for all g E G. Since G is compac t  connected 

and U is a neighborhood of eG, G = U m for some m E N.  Hence, given any m 

right t ransla tes  W1, W2, . .  . , Wm of V, say Wj = Vgj, we have 

G c Umgm.. .gl  = (Ugm) . . . (ug l )  c w ~ . . . w l .  

This completes  the proof. I 
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