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ABSTRACT
Blending methods of Topological Dynamics and Control Theory, we
develop a new technique to construct compact-Lie-group-valued minimal
cocycles arising as fundamental matrix solutions of linear differential equa-
tions with recurrent coefficients subject to a given constraint. The precise
requirement on the coefficients is that they belong to a specified closed
convex subset S of the Lie algebra L of the Lie group. Our result is proved
for a very thin class of cocycles, since the dimension of S is allowed to
be much smaller than that of L, and the only assumption on S is that
Lo(S) = L, where Lg(S) is the ideal of L(S) generated by the difference
set S — S, and L(S) is the Lie subalgebra of L generated by S. This covers
a number of differential equations arising in Mathematical Physics, and

applies in particular to the widely studied example of the Rabi oscillator.
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1. Introduction

We develop a technique to construct cocycles that have desired dynamical proper-
ties and arise as the fundamental matrix solutions to linear differential equations
of a given specific form. Our motivation comes from recent developments in
Mathematical Physics regarding stability questions in the evolution of quantum
systems, which turn out to be intimately related to the dynamical properties of
certain flows [10]. As an example of the general situation to be studied here,
consider the so-called “Rabi oscillator,” i.e. the system governed by the equation

.d A t

(1.1) zd—f = (f(t)* f_(/\) )w, ¥ e C2.

This is the Schrodinger equation for the dynamics of a “two level atom” or a spin
1/2 particle moving under external magnetic field f(t). The function f: R — C
is a complex-valued potential, typically quasiperiodic in ¢, and A € R is a fixed
parameter. In the past few years this system has been extensively investigated by
physicists using numerical techniques, cf. [1], [5], [15], [16]. First rigorous results
regarding existence of quasi-periodic solutions have recently been proved by P.
Bleher, H. Jauslin and J. Lebowitz [3], using the K.A.M. technique. In contrast,
we shall prove that the SU(2, C)-valued cocycle generated by (1.1) is minimal for
generic f.

Our result will in fact be valid for time-dependent differential equations far
more general than (1.1), of the form z' = B(t)z, where z takes values in R™
or C", and ¢ — B(t) is a real or complex matrix-valued function. The time-
dependence of B(t) will be “recurrent,” in the sense that we will think of the
matrix functions ¢ — B(t) as arising from some given continuous matrix-valued
map A, defined on a space §2 where some recurrent flow T is given, by evaluating
A along trajectories of 7. Even more generally, the maps A will in fact take
values in the Lie algebra L of a compact connected Lie group G, and will generate
cocycles X4: @ x R — G. We will try to prove that, for “very thin” classes C
of maps A, the corresponding cocycles are minimal for generic A € C. Various
results about generic behavior of cocycles within suitable classes have been known
for some time, cf. [6], [12], [13]. However, the classes where all the known results
hold are cohomology invariant, in the sense that all cocycles cohomologous to
a cocycle in the class are again in the class. In our case the classes are never
cohomology invariant since the differential equation from which the cohomologous
cocycles arise may fail to be of the special form we desire. Furthermore, in our
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situation there is a very stringent condition on cocycles, namely, they must arise
as solutions to a differential equation of a given specific form, such as (1.1).
Our “thin classes” are described via a constraint on the values of the map
A: @ — L, and arise from maps taking values in a fixed given closed convex
subset S of L. Typically S will be “thin” in L, in the sense that the dimension
dim G of G will in general be considerably higher than the number dim S of
free parameters that we are allowed to vary to generate our minimal cocycle.
(For example, in the case of the Rabi oscillator the cocycle takes values in a
three-dimensional Lie group, but we only have two real degrees of freedom, since
the map f which is our perturbation takes values in a two-dimensional space of
complex numbers.)
Precisely, we will start by specifying
(1) a compact connected Lie group G with Lie algebra L,
(2) a subset S of L,
(3) aflow (2,T), where Q is a compact metric space and T = {T;}ser is a

one-parameter group of homeomorphisms 7T;: £ — €2 of Q.

Remark 1.1: Equation (1.1) is a special case of the above situation, correspond-
ing to G = SU(2, C) (so that L = su(2, C), the set of all 2 x 2 skew-hermitian ma-

trices) and S = Sj, the set of all M € su(2, C) of the form <ic—t—f—/\b zai-;- b >,
where a,b € R, so S is in fact a two-dimensional affine subspace of the three-

dimensional Lie algebra L. 1

The functions ¢ — B(t) will then be those of the form ¢t — A(Tiw), for w € Q.

This gives rise to a family of differential equations
(1.2.w) '(t) = A(Tw)z(t), z€G,

parametrized by points w € . We use the following notational convention: we
think of L as the tangent space of G at the identity element eg of G. The effect on
aw € L of the differential dR, of the right translation G 3 z — R,(2) = 22 € G
is written wx (rather than (dR;)(w) or (R;).(w), as is often done in Differential
Geometry), so wx is a tangent vector at z, and then the map V,,: 2 — wx is
a right-invariant vector field. The map w — V,, enables us to identify L with
the space of all right-invariant vector fields on G. The right-hand side of (1.2.w)
is then the value at x(¢) of the right-invariant vector field whose value at eg is
A(Tiw), so (1.2.w) is equivalent to z'(t) = Va(r,.)(z(t)). If G is a matrix Lie
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group, then A(T;w)x(t) can be interpreted as an ordinary matrix product. The
reader who so prefers can assume throughout the paper that G is a matrix Lie
group and A(Tw)z(t) is an ordinary product.

Let A: Q — L be a continuous map. For each w € Q, let t — X 4(w,t) be the
fundamental matrix solution to (1.2.w), i.e. the solution (-} of (1.2.w) such that
z(0) = eg. Then the map X 4: 2 x R — G is continuous and satisfies the cocycle
identity

(1.3) Xalw, t+5) = Xa(Ti(w), $) X alw, 1) forallwe, tseR.

The proper analogue of the flow generated by the differential equation (1.1) is
now the skew-product flow (G x ©,74) generated by the cocycle X4 on G x €,
where T4 = {T/};cr, and T4: G x @ — G x ) is the map given by

(1.4) T (9,w) = (Xa(w,t)g, Te(w))-

We will prove that if (Q2,T) is minimal then the skew-product flow T4 defined
on G x 2 by (1.4) is minimal for a generic S-valued A, provided that S is convex
and not too small. We recall that a flow is minimal if every orbit is dense or,
equivalently, if there are no proper closed invariant subsets.

To state the condition on S, let us first define L(S) to be the Lie subalgebra of
L generated by S, and let Lo(S) be the ideal of L(S) generated by the difference
set

S—-S={x—-y:z€eSf yeS}

We now introduce two fundamental concepts of Nonlinear Control Theory (cf.

for example [17]):

Definition 1.1: A subset S of the Lie algebra L of a Lie group G has the
accessibility property if L(S) = L, and the strong accessibility property
if Lo(S) = L. |

Remark 1.2: In Control Theory, the accessibility properties of Definition 1.1 are
used for general sets S of smooth vector fields on a smooth manifold M. In that
case, one lets L(S) be the Lie algebra of vector fields generated by S, and defines
Lo(S) as above. Then S is said to have the accessibility property (resp. the
strong accessibility property) at a point p € M if {X(p): X € L(S)} = T,M
(resp. {X(p): X € Lo(S)} = T,M), where T, M is the tangent space of M at p.
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When M is a Lie group and S consists of translation-invariant vector fields, then
these conditions do not depend on p, and are equivalent to those of Definition
1.1. 1

We now state the main theorem, whose proof will be given in the next section.

THEOREM 1.1: Let-(Q, {T:}:er) be a flow on a compact metric space Q. Let G
be a compact connected Lie group with Lie algebra L, and let S be a subset of
L. Let C(, S) denote the metric space of all continuous maps from Q to S with
the supremum metric. Assume that

(1) the flow (2, {T;}:cr) is aperiodic and minimal,

(2} S is closed and convex,

(3) S has the strong accessibility property.

For each A € C(%, S), consider the the skew-product flow (G x Q,T4) defined
by T4 = {T?}:er, where the T are given by (1.4). Let

Crmin(2,8) = {A € C(Q,5): (G x Q,T*) is minimal}.
Then C,,:, (2, S) is a residual subset of C(Q, S).

Remark 1.3: Notice that our condition on the set S is a little stronger than
demanding that S generate L as a Lie algebra over R. It is easy to see that
Theorem 1.1 is no longer true if in Hypothesis (3) strong accessibility is replaced
by accessibility. To see this, let & = T? = §! x S! be the 2-torus, and let T
be given by T;(e1,ei%) = (e!(®11t) ¢i¥2+ot)) ‘where a is an irrational number.
Then T is minimal and aperiodic. Let G = S, so L = R. Let § = {1}. Then S
has the accessibility property, but the strong accessibility condition fails. Since
S consists of a single element, the map A: Q — L is unique. It is easy to see that

T# is not minimal, since

TA (e, 6101 ¢i%) = (H00tD) giler+1) gil6a+at)y
so every point (zo, z1, z2) in the T#-orbit of (1,1, 1) satisfies zo = 21, showing
that the orbit is not dense. |

Example: For the Rabi oscillator, G = SU(2, C) and L = su(2, C), as explained
before, and the set S is given by

s:{(‘_@ z ):zeC}.
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Then S is closed convex and S — S contains the matrices (_01 —OZ > and
0 1
-1 0
conditions of Theorem 1.1 are satisfied. 1

, which generate L as a Lie algebra. Then Lo(S) = L, and the

To prove Theorem 1.1, we develop a new technique to construct cocycles with
desired dynamical properties in “thin” classes. Our technique involves a blend
of methods of Dynamical Systems and Control Theory. The main idea is to
think of a perturbation needed to get the desired dynamical properties for the
cocycle as a control function that steers the state of a certain control process to
the desired target. We shall prove an accessibility result (Proposition 2.1) for a
system of non-autonomous right-invariant vector fields on a Lie group. (See [11],
[17]. Results of this type are of independent interest in Control Theory.)

In Theorem 1.1 minimality of the skew product can be replaced by topological
weak-mixing (see [14] for the needed modifications). Furthermore, using argu-
ments of [13] one can also show the generic absence of almost periodic solutions
to the differential equation for any w € Q. These results can be obtained by
minor modifications of our technique and are left to the reader.

We would like to conjecture that in fact for a generic A the above flow is
ergodic. However at this point there are non-trivial technical difficulties in
proving ergodicity. In the example of the Rabi oscillator, the stability prop-
erties of quantum evolution are studied through the spectral properties of the
one-parameter unitary group V = {V;};cr defined on L%(2, C?, i) by

(1.5) Vif (@) = Xalw,t) 7 f(Tew)),

where p is a given invariant Borel probability measure on 2. The above conjec-
ture would imply that generically these operators have only purely continuous

spectrum.

2. Proof of Theorem (1.1)

Fix a point (eg,wp) € G x §, where wg €  and eg is the identity element of G.
Given nonempty open sets Uy C G and Uy C 2 define the set:

E(U1,Us) = {A € C(,5): the orbit of (eg,wp) under T4 intersects Uy x Us}.

We will show that E(U,Uz) is open and dense in C(£2,5). This will imply
our desired conclusion. Indeed, by varying U; and U, over countable bases of
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the topologies of G and €2, respectively, and considering intersections of the cor-
responding sets E(Uy,Us), it will follow that the set {A: the orbit of (eq,wq)
under the flow T is dense in Q} is residual. Since G x € is a compact group
extension of a minimal flow, existence of one dense orbit implies minimality [7],
80 Cnin (€2, ) is residual as stated.

Openness of E(U;,Us) follows easily from the continuous dependence of
solutions of (1.2.w) with respect to A. We now proceed to prove the density.

Let Ap € C(2,S) and ¢ > 0 be given. From now on, we choose an inner
product (-,-) on L, and let ||-|| be the corresponding norm. We want to construct
A € C(Q,S) that is e-close (in the chosen norm) to Ag and such that the orbit
of (e, wo) under T4 intersects U; x Us. We now sketch this construction.

The minimality of T enables us to find arbitrarily large » > 0 such that
T.(wo) € U,. Naturally, the corresponding points X 4,(wo,”) need not belong
to U;. However, we will show that if r is large enough then a suitably chosen
S-valued e-perturbation A of Ao will satisfy X 4(wg, ) € Ur. The property that
X a(wo,r) € U, only depends on the values of A on the set

K(r) = {Tu(wo): 0 < t < 1},

which is homeomorphic to the interval [0, r] via the map ¢t — T;(wp), due to the
aperiodicty of 7. So all we need is to construct the desired perturbation A on
K (r), and then extend it to all of  using Tietze’s Extension Theorem. (A simple
argument will show that the extension can be kept S-valued and e-close to Ag
if these properties hold on K(r).) We therefore have to show that if r is large
enough, and 7, denotes the restriction to [0, 7] of the curve y5: R — S given
by v(t) = Ao(Ti(wo)), then 7o, can be e-perturbed in the space C([0,r], S) of
continuous S-valued functions on [0,7] so that for the resulting curve v, if we
solve the Cauchy problem g¢'(t) = (t)g(t), g(0) = eg, then the solution will
satisfy g(r) € U,. Now, an equation such as

(2.1) g =1(t)g,

in which v is an arbitrary curve with values in some subset S of the Lie algebra
L of a Lie group G, is known in Control Theory (cf., e.g., [11]), as a right-
invariant control system on a Lie group. The curves v are the controls,

and each control gives rise to a trajectory for each initial condition g(0). If
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g € G, then the set of all points of the form g(r), for all trajectories g(-) —
corresponding to all possible controls— that satisfy ¢(0) = g, is known as the
time r reachable set from §. More generally, one can consider instead of a
fixed “control constraint” such as y(t) € S, a time-varying constraint of the form
v(t) € S(t), where the set S(t) depends on time. In particular, our problem
can now be stated as follows: given a compact connected Lie group G, a subset
S of the Lie algebra L of G, an € > 0, and a curve y5: R — S, we want to
show —under suitable hypotheses on S—- that for sufficiently large r the time
r reachable set from eq for the control system ¢’ = ~v(t)g, with time-varying
constraint y(t) € S, ||7(t) —v0(?)|] < ¢, is the whole group G. To achieve this, we
first pick an arbitrary > 0 —which in our proof below will be taken equal to 1—
and show that the time 7 reachable set by means of piecewise continuous controls
has nonempty interior. This will turn out to be true for an arbitrary curve 7,
so in particular we can apply it to all the translates t — o(t + k7) = v§(¢), for
k=0,1,2,.... In each case, we get a nonempty open subset V; of G such that
every point gx of V. can be reached from e in time 7 by means of a trajectory
of g’ = v(t)g corresponding to a piecewise continuous —gi-dependent— control
v*: [0,7] — S that is e-close to 7§ on [0,7]. If we translate the v*’s back to
the intervals [k7, (k + 1)7], and concatenate them, we get, for each m € N, a
piecewise continuous control 4™: [0, m7] — S that is e-close to o and gives rise
to a trajectory going from eg t0 gmg@m—1---g1 in time m7r. Now suppose that
for some m we could guarantee that

(2.2) ViiVin_1-+- V1 = G.

In that case we can arbitrarily specify an element h of G, and then choose y = 4™
so that the solution of (2.1) that goes through eq at time 0 will satisfy g(m7) = h.
If we then pick » > m7 such that T,(wg) € Us, and then choose h such that
X ao(Tinr(wo), 7 — m7)h € Uy, and extend v to [0,7] by letting it equal vy on
(m7,r], then this v will be our desired perturbation, except only for the minor
detail that v is only piecewise continuous, and we need it to be continuous. This
last point, however, is easily taken care of: one can approximate v by continuous
S-valued maps v” that are e-close to 7y, in such a way that the corresponding
trajectories g¥ converge uniformly to g(-). (Naturally, this approximation is not
possible in the uniform topology, but it is possible, for example, in L! norm, and
this suffices to get uniform convergence of the solutions.}) Then g¥(r) will be in
U, for large enough v, and the function * will be our desired perturbation.
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The crucial question is therefore whether the Vj can be chosen so that (2.2)
holds for some m. Notice that each Vj corresponds to a different control 'y(’f.
(More precisely, Vi depends on the restriction 3§ of 7§ to [0,7].) If we could
guarantee that every Vj contains a translate of some fixed neighborhood W of
eq, then the validity of (2.2) for some m would be a consequence of the fact that

a compact connected topological group has the following Property A*:

Definition 2.1: A topological group G has Property A* if given any neighbor-
hood V of the identity there exists a m € N (depending on V) such that, if
Wi, Wa, ..., W, are any right translates of V', then W, W,,, _;---W; = G. |

The proof that G has Property A* is given at the end of the paper. In view
of this property, our conclusion will follow if we show that the Vi’s can be
chosen in a uniform way, in the sense that each contains a translate of some
fixed neighborhood W of eg.

The crucial point is that, although the neighborhoods V}, depend on the curves
3% € C([0,7],S), the desired uniformity can be achieved because the set of curves
4& that interest us is precompact. The precompactness follows easily from the
fact that the curves t — Ag(T;(w)), 0 < ¢ < 7, form a compact set as w varies
over §). The fact that this implies the existence of W is the content of our main
accessibility result, Proposition 2.1 below.

We now introduce some notations so as to be able to state and prove
Proposition 2.1. For a bounded or unbounded closed interval I, let C?¢(I, S)
denote the set of all piecewise continuous maps A: I — S, s0 A € CP¢(I,S) if A
is an S-valued map on I that is continuous at all points of I except for a finite
set of jump discontinuities. If 0 € I, A € CP<(1,5), let I'4 denote the unique
G-valued absolutely continuous solution curve of the initial value problem

g =A(t)g(t), tel,
g(O) EX7el
If Ae C?(1,S) and 6 > 0, define the set Ng(A, §) as follows:

Ns(A,8) ={B € CP(1,S): suII) [|A(t) = B(t)|| < 6}.
te

PROPOSITION 2.1: Let G be a Lie group with Lie algebra L. Let S C L be as in
Theorem 1.1. Let T > 0, and let F C C([0, 7], S) be a compact subset. Then given
& > 0 there exist a neighborhood W of the identity e of G, depending on é§ but
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independent of A € F, such that for each A € F the set {I'g(r): B € Ns(4,6)}
contains some right translate of W.

Before proving Proposition 2.1, we show how it allows us to prove Theorem
1.1 by following the strategy outlined above.

Recall that Ay € C(€, S) and € > 0 are given and we want to find A € C(©, 5)
that is e-close to Ao and such that the orbit of (eg,wp) under T intersects
U; x U;. We now list the steps in the construction of A in complete detail.

STEP 1: Let § =¢/2.

STEP 2: Apply Proposition 2.1 with 7 = 1, F = {(4o).: w € Q} C C([0,1], 5),
where (Ao).,(t) = Ao(Ti(w)), t € [0,1]. We then get a neighborhood W of eg,
depending only on é, such that for each w € Q there exists some h(w) € G
satisfying

(2.3) Wh(w) € {T&(1): B € Ns((4o)w, 5)}.

STEP 3: Corresponding to W, pick m € N according to Property A*.
STEP 4: Set & = Tj(wo), 0 < j < m. Consider A; € F defined by

Ai(t) = Ao(Tu(Ei-1)),  te01), 1<j<m.
Letting h; = h(€;-1), 1 < j < 'm, (2.3) yields;
(2.4) Wh; C {Ts(1): B € Ns(4;,6)}.
STEP 5: By Property A* we have,
(2.5) W hWhine1 - - - Why = G.

STEP 6: Using the minimality of the base flow, select r > m such that T,.(wp) €
Us,.

STEP 7: Pick g € G such that
(2.6) XAO(Tm(wO),r—m)g eU;.
STEP 8: Using (2.5), write

(2.7) 9=0gmgm-1"""91, gj € Wh; forj=1,...,m.



Vol. 100, 1997 MINIMAL COCYCLES 319

STEP 9: Using (2.4), select A; € Ns(4;,6) such that g; = FA].(I)-
STEP 10: Define

AW =A;t-(j-1) ifj-1<t<j, 1<j<m,
A(t) = Ao(Ti(wo)) if t € R\[0,m).

Then A € CP*(R, S), [ ;(r) € Uy, and [|A(t) — Ao(T:(wo))|| < 6 for all t € R.

STEP 11: Let {A”} be a sequence of continuous S-valued functions on R that

converges to A in L! norm on each compact interval, and satisfies
(2.8) [|A¥(t) — Ag(Ti(wo))|| < 26 for allt € R.

(To see that such a sequence exists, define A*(t) = v f:+% A(s)ds. Then A is

S-valued, because S is closed convex and A is S-valued. If we define

t+1
A5(t) = v / Ao(Ta(w0))ds,

then it is clear that A4(t) — Ao(Ti(wo))ds uniformly as v — oo, because the
function t — Ag(Ti(wo)) is uniformly continuous. Since ||A¥(t) — A5(t)|| < § for
each t, we may assume —by taking v sufficiently large— that (2.8) holds. Finally,
it is clear that AY(t) — A(t) as v — oo whenever ¢ is a point of continuity of
A. Since the A” are clearly uniformly bounded, the L! convergence on compact
intervals follows trivially.)

STEP 12: It follows trivially from Gronwall’s inequality that Iz, (r) — I 5(r)
as v — 00. Since T 4(r) € Uy and U; is open, we conclude that I 5, (r) € Uy for
some v. Pick a v for which this is true, and let A*: [0,7] — S be the restriction of
A¥ to [0,7]. Then A* is continuous and S-valued on [0, 7], satisfies T 4- (r) € Uy,
and is e-close to t — Ag(T;(wo)) in supremum norm on [0, ).

STEP 13: Using the fact that the flow T is aperiodic, we may identify the
interval [0,7] with the compact subset K = {Ti(wg): t € [0,7]} of 2. So we
may regard A* as defined on K. It is then easy to see that A* has a continuous
extension A:  — L that satisfies

(2.9.4) Alw)e S forallwef,
(2.9.ii) HA(w) — Aolw)|| < e forallwe Q.
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Indeed, the Tietze Extension Theorem, applied to the map A* — Ag, which is
defined on A and takes values in the open ball B(¢) = {z € L: ||z|| < €}, yields
a B(e)-valued extension 6 of A* — Ap to all of 2, and if we let A = Ag + 6
we get an extension of A* to 2 that satisfies (2.9.11); If A is not S valued,
then we can modify A by composing with xg, the projection map from L to
S. (Recall that, if € L, then mg(z) is, by definition, the point of S closest
to x. Since the norm || - || arises from an inner product, 75 is well defined and
continuous.) Since Ag is S-valued, it is clear that 75 o A is pointwise closer to
Ag than A is, so (2.9.i) remains true after this modification. (Let w € €, and
write x = A(w), y = ms5(x), 2 = Ag(w). Let zs = y + s(z — y) for s € R. Then
llz = zll* = llz — yl* + $®lly = 2|I* + 2s(x —y,y — 2). (@ —pyy—2) <O, it
would follow that ||z — z,||* < ||z — y||? for small positive s. Since z, € S for
0 < s < 1, this would contradict the fact that y = 7g(z). So (x —y,y — z) > 0.
But then, setting s = 1, we get ||z — z||? > ||y — z]|%, so y is closer to z than x
is, as desired.)
Notice that by construction X 4(wo,7) = ' 4(r) € U;. Then

TA(eg,wo) = (Xa(wo, ), Tr(wo)) € Uy x Us.

So the orbit of (eg,wo) under T4 intersects Uy x Uz, and the proof of Theorem

1.1 is complete, modulo Proposition 2.1. |

We now turn to the proof of Proposition 2.1. We will use a well known
accessibility result from Control Theory, whose short proof will be given in full.
The result says that, given a generating subset .S of the Lie algebra L, the set
of points of the Lie group G that can be reached from the identity by a finite
polygonal path consisting of integral curves of vector fields in S has nonempty
interior. To state it precisely, we first introduce some notation.

If M is a smooth manifold and z € M, we use T, M to denote the tangent
space of M at x. We recall that if G is a Lie group then the Lie algebra of
G is, by definition, the tangent space L = T.,G, and we agree to identify L
with the space of right-invariant vector fields on G. With this identification, the
exponential map L 3 X — eX € G satisfies & (e'X) = Xe'X.

Given k € N and X = (X1,...,X) € §¥ = S x -+ x S, define a map
Ex:R*¥ - G by

Ex(f) = Ex(ty,...,tk) = el X1 ... gteXn
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Let (D(Ex));: R* — Tg, (7(G) = L be the differential of Ex at 7. Let
p(t) = rank(D(Ex)); and px = Max{px(?): € R*}.

LeMMA 2.1: Let G be an m-dimensional Lie group with Lie algebra L, and let
S be a subset of L that has the accessibility property (i.e. S generates L as a
Lie algebra). Then there exists an m-tuple X = (X1,...,Xm) € S™ such that
for every n > 0 the set {eslx1 coeesmXmy 0 < SjaZ;n=15j < n} has nonempty
interior.

Proof: We first prove by induction on k that

(2.1.1): for 1 < k < m there exists X € S* such that px = k.

This is trivially true for k = 1. Assume that it is true fora k € {1,... ,m—1}.
Let X € S* be such that px = k, and find ¥ = (t1,...,t) € R* such that
px(t) = k. The implicit function theorem implies that there exists an ¢ > 0
such that Ex maps a cubic e-neighborhood V (%, ¢) of f diffeomorphically onto a
k-dimensional submanifold ¥ of G. Recall that if two vector fields are tangent
to ¥ then so is their Lie bracket. Thus, since S generates L, there must exist
Y € S and g € ¥ such that Yg ¢ T,5. (Otherwise, every X € L would be
tangent to L, contradicting the fact that £ < m.) Let ¢ = E x(f) for some
f=(f1,....6) € V([ e). Let X = (Y, Xy,...,Xx) € S¥t!. Then

Y _s1 X X k
Eg(T,81,...,8k) =€ ¥ ek (g 5) €ERT, TER.

Since px(t) = k, it is clear that p4(0,£) = k + 1. This completes the proof of
(2.1.1).

If we now apply (2.1.I) with £ = m, we find a £ = (¢1,...,tn) € R™ and
X € S™ such that px(f) = m. Since the map Ex is real-analytic, the set
U of points f for which px(f) = m is dense in R*F. In particular, given any
n > 0, U contains points ¢ = (t1,...,tm,) such that 0 < ¢; for j =1,...,m and
> i1 t; <. The desired result then follows. |

To prove Proposition 2.1, we need to sharpen the above lemma, and show that
in fact the set {es1X1...esmXm:0 < 55, 37" s; = 1} has nonempty interior for
all n > 0. This is where the strong accessibility condition on S will be decisive.
To discuss this in detail, we need to introduce some more notations.

First, let us write L*(S) to denote the linear span of all brackets

V= [1)1,[’02,.‘.. ,[’Uk_l,’l)k] .- ]], v; € S, k>2.
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Let A(S) be the linear span of S, and use Ag(S) to denote the linear span of
all the differences v — w, for v,w € S. Then A¢(S) can also be characterized as
the set of all finite linear combinations Y, Ajv;, v; € S, 32, A; = 0. It is then
clear that Lo(S) = L*(S) + Ao(S) and L(S) = L*(S) + A(S). (The first equality
follows from the facts that

(1) L*(S) C Lp(5), which is true because, whenever a bracket v is of the form

[v1, [v2, <.+, [Vk—1, V] -+ <]], then v = [v1, [ve, ..., [Vk—1, Uk — Vk—1]---]],

(2) §—5C A(S) C Lo(9),

(3) L*(S)+ Ag(S) is an ideal of L(S).
The second equality is trivial.) This implies in particular that if Lo(S) # L(S)
then dim(L(S)) = 1 + dim(Lq(S)). We summarize these observations as follows:

(I): Ifv e L, then v € Ly(S) if and only if v can be expressed as.
k k
(210) v=vo+ Y Av;, 3 A=0, welL*(S), v;e€S forj>0.
j=1 j=1

(I1): Either L(S) = Lo(S) or Lo(S) has codimension one in L(S).
Now let G = G x R and S = {(v,1): v € S}. Let L be the Lie algebra of G.
Let L(ﬁ ) be the Lie subalgebra of L generated by S.

LEMMA 2.2: With the above notations, Lo(S) = L if and only if L(§) = L.

Proof: Foreachv e L, let ¥ = (v,0) € L, and write 9 = (v,1). Thenv — v is a

Lie algebra homomorphism. In particular, if v € L*(S) then ¥ € L*(S) because,

if v = [v1, [va, ..., [Vk=1,Vk] - -]], then
U= [’61, [’172, e ,[ﬁk_l,f)k] . ]] = [171, [172, s ,[ﬁk_l,'f)k] .. ]] )

since k£ > 2.
Suppose Lo(S) = L. Since {#: v € L} and (0,1) span L, it is enough to show
that these vectors belong to L(S). Let v € L. Since Lo(S) = L,

k k
U=UQ+Z)\jUj, Z)\j=0,
Jj=1 Jj=1

where the v; are as in (2.10). But then & = % + Z;c:l A;0;, and Z;c:l Ajv; =
Z?:l A;0;, since Z;.“:l Aj = 0. Since we know that 9y € L*(S5), we conclude
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that o € L(S). Therefore {#: v € L} C L(5). Now pick any v € §. Then
(0,1) = 9 — 9. Since © € § and ¥ € L(S), (0,1) belongs to L(5) as well. So

L) =1L.
Conversely, suppose that L = L($' ). Then every w € L can be written as

k

(2.11) w=wo+ Y Ajuwj,
j=1

where wy € L*(S’) and w; belong to S for 1 < j < k. In particular, given
any v € L, we can take w = ¥, and express it in the form (2.11). Equating
second components, we conclude that Z;»c:l A; = 0. Now, it is easy to see that
wo = Ug for some vy € L*(S5). If we write w; = 9; for j = 1,... , k, we see that
v =g+ Y5y Aju; with Y5_; Aj =0, vg € L*(5), and v; € S for 1 < j < k. So
v € Lo(S). This shows that L = Lg(S), concluding our proof. ]

We are now ready to prove the desired sharper version of Lemma 2.1.

LEMMA 2.3: Let G be an m-dimensional Lie group with Lie algebra L, and let
S be a subset of L that has the strong accessibility property. Then there exists
an m-tuple X = (X1,...,Xm) € S™ such that for every n > 0 the set

m

{eslx1 st Xm0 < S5, Zsj = n}
i=1

has nonempty interior.

Proof: Apply Lemma 2.1 to the Lie group G = G xR, the Lie algebra L = LxR
of G, and the subset 5 = {(v,1): v € S} of L. Lemma 2.2 ensures that the
hypothesis of Lemma 2.1 is satisfied. Thus we get X; = (X;,1) € $,1<j<m
such that the set {e1 %1 ... e Xm: 0 < g5, >i-18; <n} contains a nonempty
open subset U of G. Fix any point ¢ € U. Write ¢ = (p,r), p € G, r € R. Let

U ={g € G:(g,r) € U}. Then U is a nonempty open subset of G. If g € U, then

(g,r) = etX1...esmXm for some sy,...,Sm such that 0 < s; and Zj 55 < 1.
Since
. . m
e X1 L gsmXm (elel s o 257)’
j=1

we have in particular Z;":I s; =r. So every g € U is of the form 31 %1 ... e3mXm
with 0 < s, 3 .5; <n, and 3 ;s; = r. It then follows that r < 7. Now let
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U* = {ge(""r)x’": g € U}. Then U™ is a nonempty open subset of G, and every
member of U* is of the form e X1 ... glem+(1=rD X with 0 < 55, 3770 55 = 7,
i.e. of the form e*1X1...esmXm with 0 < 55, Z;nzlsj = 5. This proves the

lemma. [ |

Proof of Proposition 2.1: Let m = dim(G). Recall that we are given a compact
set F C C([0,7},S), 7 >0, and a 6 > 0. Let A = {A(¢): t € [0,7], A € F}.
Then K C S is compact. Let {U;: 1 < j < ¢q} be a cover of i’ by relatively open
subsets of § with diameter less than . Using a Lebesgue number for this cover
and the fact that F is compact and hence equicontinuous, we can find p such
that 0 < p < 7 with the property that for each A € F there is a j = j(A) such
that

(2.12) {A(t):0 <t<p}CU;.

We now let ¥ denote the set of all m-tuples s = (51,...,8m) € R™ such that
sg >0for k=1,...,mand >, s =p IfX = (Xy,...,Xsn) € L™ and
s=(51,...,5m) € R™, write X = esmXm ceeestXu

Since S is convex, it is easy to verify that every nonempty relatively open
subset of S also has the strong accessibility property. Then, applying Lemma 2.3

with U; in the role of S, we get, for every j € {1,...,q}, an m-tuple
Xj:(X{,... XY eU; x -+ x U;

such that the set Q; = {e*X’: s € T} contains a translate W;h; of some
neighborhood W of the identity. Let )

Then W is a neighborhood of eg, since G is compact. Moreover, Wg = gW for
all g € G. Clearly, Wh; C Q; for every j. (Notice that W depends only on
p, which in turn depends only on ¢ and not on individual A € F.) Now, given
any s € &, 1 < j < g, define H, ;: [0,p] — S to be the piecewise constant map
whose value on the interval [51 4+ 4 Sp_1,81+ -+ 8g) I8 X,Z. Given A € F,
s € %, define B 4: [0,7] — S by letting B, 4(t) = Hj j(a)(t) for 0 <t < p,
B a(t)=A(t) forp<t <.
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Then, if A € F, it is clear that B, 4 € Ng(A. 6) for every s € £. Moreover,

Whjay C Qjay=1{TH, 4 (P): s € T},

and then
Wha C {T'p, ,(7): s € £} C {T'p(7): B € Ns(4,6)},

where hy = FA(T)FA(p)_lhj(A), and we use the fact that
L a(T)Ta(p) *Whyay = WEa(m)Ta(p) hjcay = Wha.

This shows that W has the desired property. 1

Proof that a compact connected group has property A*: Let V be a given
neighborhood of eg. Let U = ({gVg~': g € G}. Then U is a neighborhood of
eg as well, U C V, and gU = Ug for all ¢ € G. Since G is compact connected
and U is a neighborhood of e, G = U™ for some m € N. Hence, given any m
right translates Wy, Wy, ... , Wy, of V, say W; = Vg;, we have

G C UM g0 = (Ugm) -+~ (Ug1) € Win - W,
This completes the proof. ]
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